index

The Kaluza–Klein Spectrum on the Poincaré Homology Sphere

· 15min

The projection from a 6D periodic lattice to 3D produces a quasicrystal in physical space and an orbifold S3/2IS^3/\mathrm{2I} — the Poincaré homology sphere — in the internal space. The constraint geometry and the spectral content of this orbifold are two outputs of that single projection. The constraint geometry provides the β\beta-function. The spectral content provides the effective dimension D\mathcal{D} that enters the β\beta-function’s dimensional correction. The full chain connecting these is developed in From Lattice Projection to Cosmic Expansion. This post computes the scalar Kaluza–Klein spectrum on S3/2IS^3/\mathrm{2I}.

1. The Internal Space

The binary icosahedral group 2ISL(2,5)\mathrm{2I} \cong \mathrm{SL}(2,5) is the double cover of the icosahedral rotation group IA5\mathrm{I} \cong A_5. It has 120 elements — the largest finite subgroup of SU(2)\mathrm{SU}(2) — and acts freely on S3SU(2)S^3 \simeq \mathrm{SU}(2) by left multiplication. The quotient Σ=S3/2I\Sigma = S^3/\mathrm{2I} is a smooth, compact, oriented three-manifold with π1(Σ)=2I\pi_1(\Sigma) = \mathrm{2I} and H1(Σ;Z)=0H_1(\Sigma;\mathbb{Z}) = 0. Poincaré constructed it in 1904 as a counterexample to the conjecture that homology determines the three-sphere1. It is the unique spherical space form with icosahedral holonomy.

In a Kaluza–Klein compactification on Σ\Sigma, the scalar field equation reduces to the eigenvalue problem for the Laplace–Beltrami operator ΔΣ\Delta_\Sigma. The eigenvalues of ΔS3\Delta_{S^3} on the unit three-sphere are

λk=k(k+2),k=0,1,2,,\lambda_k = k(k+2), \qquad k = 0, 1, 2, \ldots,

with degeneracy (k+1)2(k+1)^22. Each eigenspace carries the representation Dk/2Dk/2D_{k/2} \otimes D_{k/2} of SU(2)L×SU(2)R\mathrm{SU}(2)_L \times \mathrm{SU}(2)_R under the Peter–Weyl decomposition of L2(SU(2))L^2(\mathrm{SU}(2)), where DjD_j denotes the spin-jj irreducible representation of dimension 2j+12j+134.

On Σ=S3/2I\Sigma = S^3/\mathrm{2I}, scalar wavefunctions must be 2I\mathrm{2I}-invariant under the left action. Since I2I-I \in \mathrm{2I} acts as (1)k(-1)^k on Dk/2D_{k/2}, only even values k=2lk = 2l contribute (integer spin j=lj = l). For each surviving spin ll, the eigenvalue is

λl=4l(l+1),\lambda_l = 4l(l+1),

and the full orbifold multiplicity is

ml=(2l+1)nl,m_l = (2l+1) \cdot n_l,

where the factor (2l+1)(2l+1) comes from the unbroken SU(2)R\mathrm{SU}(2)_R action on the opposite Peter–Weyl factor, and nln_l counts the 2I\mathrm{2I}-invariant vectors in the spin-ll representation. The KK mass tower is therefore determined by the branching multiplicities nln_l.

2. Branching Rules

The group 2I\mathrm{2I} has nine conjugacy classes. Each element g2ISU(2)g \in \mathrm{2I} \subset \mathrm{SU}(2) has eigenvalues e±iαe^{\pm i\alpha} in the fundamental representation, where α[0,π]\alpha \in [0, \pi] is the half-angle parameter.

ClassSizeOrderα\alpha
{1}\{1\}1100
{1}\{-1\}12π\pi
C10C_{10}1210π/5\pi/5
C5C_51252π/52\pi/5
C10C_{10}'12103π/53\pi/5
C5C_5'1254π/54\pi/5
C6C_6206π/3\pi/3
C3C_32032π/32\pi/3
C4C_4304π/2\pi/2

The total is 1+1+12+12+12+12+20+20+30=1201 + 1 + 12 + 12 + 12 + 12 + 20 + 20 + 30 = 120. The character of the spin-ll representation of SU(2)\mathrm{SU}(2) at half-angle α\alpha is

χl(α)=sin((2l+1)α)sin(α),\chi_l(\alpha) = \frac{\sin((2l+1)\alpha)}{\sin(\alpha)},

with χl(0)=2l+1\chi_l(0) = 2l+1 and χl(π)=(1)2l(2l+1)\chi_l(\pi) = (-1)^{2l}(2l+1). The multiplicity of the trivial representation of 2I\mathrm{2I} in the restriction of spin-ll is

nl=1120iCiχl(αi),n_l = \frac{1}{120} \sum_{i} |C_i| \, \chi_l(\alpha_i),

where the sum runs over the nine conjugacy classes CiC_i with half-angle parameters αi\alpha_i. This is an exact finite sum over nine terms.

3. The Spectrum

Evaluating nln_l for l=0l = 0 through l=120l = 120 partitions the spectrum into three regimes.

Below the Coxeter number (l<30l < 30): The tower is sparse. Of the 30 spin values l=0,,29l = 0, \ldots, 29, exactly 15 survive with nl=1n_l = 1, and 15 are forbidden with nl=0n_l = 0. The surviving spin values are

l{0,6,10,12,15,16,18,20,21,22,24,25,26,27,28}.l \in \{0, 6, 10, 12, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28\}.

The forbidden spin values are

l{1,2,3,4,5,7,8,9,11,13,14,17,19,23,29}.l \in \{1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 17, 19, 23, 29\}.

At and above the Coxeter number (30l5930 \leq l \leq 59): Every spin value is present. The invariant count begins to increase: n30=2n_{30} = 2, the first level carrying two independent 2I\mathrm{2I}-invariants. Below l=30l = 30, every surviving mode has nl=1n_l = 1; the transition at l=30l = 30 marks both the onset of completeness and the first multiplicity enhancement.

Asymptotics (l30l \gg 30): The invariant count satisfies nl(2l+1)/120n_l \to (2l+1)/120 on average, and the full multiplicity ml=(2l+1)nl(2l+1)2/120m_l = (2l+1) \cdot n_l \to (2l+1)^2/120, recovering the expected 1/2I1/|\mathrm{2I}| factor relative to S3S^3.

The first massive mode occurs at l=6l = 6, with eigenvalue λ6=467=168\lambda_6 = 4 \cdot 6 \cdot 7 = 168. The five consecutive forbidden levels l=1,,5l = 1, \ldots, 5 create the largest gap in the tower. The eigenvalue gap between the zero mode (λ=0\lambda = 0) and the first excitation (λ=168\lambda = 168) is a factor of 56 above the generic S3S^3 first excitation at k=1k = 1 (λ=3\lambda = 3). This protection factor — 56× — is the largest among all finite subgroup quotients of S3S^3.

llk=2lk = 2lλ=k(k+2)\lambda = k(k+2)nln_lmlm_l
00011
612168113
1020440121
1224624125
1530960131

4. The Numerical Semigroup

The forbidden spin values have algebraic structure. The generators {6,10,15}\{6, 10, 15\} are the degrees of the Klein invariant polynomials for 2I\mathrm{2I} acting on C2\mathbb{C}^2, divided by two. Klein showed that the ring of polynomial invariants C[x,y]2I\mathbb{C}[x,y]^{\mathrm{2I}} is generated by three homogeneous polynomials5:

f12 (degree 12),H20 (degree 20),T30 (degree 30),f_{12} \text{ (degree 12)}, \qquad H_{20} \text{ (degree 20)}, \qquad T_{30} \text{ (degree 30)},

satisfying the single relation T302=H2031728f125T_{30}^2 = H_{20}^3 - 1728 \, f_{12}^5. This relation defines the E8E_8 simple singularity in the ADE classification of du Val singularities6. The factor of two between the Klein degrees {12,20,30}\{12, 20, 30\} and the semigroup generators {6,10,15}\{6, 10, 15\} arises because the Molien series counts invariants at polynomial degree kk, while the spin quantum number is l=k/2l = k/2.

Define the numerical semigroup

S=6,10,15={6a+10b+15c  |  a,b,cZ0}.S = \langle 6, 10, 15 \rangle = \left\{ 6a + 10b + 15c \;\middle|\; a, b, c \in \mathbb{Z}_{\geq 0} \right\}.

Its gap set is

Z0S={1,2,3,4,5,7,8,9,11,13,14,17,19,23,29}.\mathbb{Z}_{\geq 0} \setminus S = \{1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 17, 19, 23, 29\}.

The semigroup has Frobenius number F=29F = 29 (the largest gap) and genus g=15g = 15 (the number of gaps). The identity g=h/2g = h/2 — the genus equals half the Coxeter number — is specific to the E8E_8 case (§7).

Theorem (Semigroup selection rule). Let ΓSU(2)\Gamma \subset \mathrm{SU}(2) be a finite subgroup and let d1,,drd_1, \ldots, d_r be the degrees of the homogeneous generators of the invariant ring C[x,y]Γ\mathbb{C}[x,y]^{\Gamma}. Define the numerical semigroup S=d1/2,,dr/2S = \langle d_1/2, \ldots, d_r/2 \rangle. Then the spin-ll representation of SU(2)\mathrm{SU}(2) contains a Γ\Gamma-invariant vector (nl1n_l \geq 1) if and only if lSl \in S. Equivalently, the forbidden KK levels on S3/ΓS^3/\Gamma are the gaps of SS.

Proof. The Molien series for Γ\Gamma acting on Sym(C2)\mathrm{Sym}^{\bullet}(\mathbb{C}^2) is

M(t)=k=0dim ⁣(Symk(C2)Γ)tk=P(t)i=1r(1tdi),M(t) = \sum_{k=0}^{\infty} \dim\!\left(\mathrm{Sym}^k(\mathbb{C}^2)^{\Gamma}\right) t^k = \frac{P(t)}{\prod_{i=1}^r (1 - t^{d_i})},

where P(t)P(t) encodes the relations among the generators57. Under the identification Sym2l(C2)Dl\mathrm{Sym}^{2l}(\mathbb{C}^2) \cong D_l, the coefficient of t2lt^{2l} in M(t)M(t) equals nln_l. Writing M(t)M(t) in the variable u=t2u = t^2 gives M~(u)=l0nlul\widetilde{M}(u) = \sum_{l \geq 0} n_l \, u^l, whose denominator is i(1udi/2)\prod_i (1 - u^{d_i/2}). The set of exponents ll with nl1n_l \geq 1 is the numerical semigroup generated by the denominator exponents di/2d_i/28, and the set with nl=0n_l = 0 is its gap set. For Γ=2I\Gamma = \mathrm{2I}, the Molien series specializes to

M(t)=1t60(1t12)(1t20)(1t30),M(t) = \frac{1 - t^{60}}{(1 - t^{12})(1 - t^{20})(1 - t^{30})},

and S=6,10,15S = \langle 6, 10, 15 \rangle with gap set identical to the forbidden KK levels. \square

The theorem reduces the determination of forbidden KK levels to a purely algebraic problem: given Γ\Gamma, look up the Klein invariant degrees and compute the gap set of the resulting semigroup. The character sum is required only for multiplicities nl>1n_l > 1 above the Coxeter threshold.

5. The E8E_8 Exponents

The E8E_8 root system has eight exponents mim_i defined by the eigenvalues of the Coxeter element: e2πimi/he^{2\pi i m_i/h} where h=30h = 30. The exponents are

{mi}={1,7,11,13,17,19,23,29}.\{m_i\} = \{1, 7, 11, 13, 17, 19, 23, 29\}.

All eight E8E_8 exponents appear among the 15 forbidden KK levels. The remaining seven forbidden levels are {2,3,4,5,8,9,14}\{2, 3, 4, 5, 8, 9, 14\}, which complete the gap set of the semigroup. The E8E_8 exponents are the integers m[1,h1]m \in [1, h-1] coprime to h=30h = 308: gcd(m,30)=1\gcd(m, 30) = 1. Since 30=2×3×530 = 2 \times 3 \times 5, the exponents avoid multiples of 2, 3, and 5 — they are maximally incompatible with the generator structure {6,10,15}={2×3,  2×5,  3×5}\{6, 10, 15\} = \{2 \times 3, \; 2 \times 5, \; 3 \times 5\} and the hardest gaps to fill by semigroup combinations.

The E8E_8 exponents have a dual role: they are both the eigenvalue phases of the Coxeter element in the root system and a distinguished subset of the forbidden KK harmonics on the Poincaré homology sphere. The McKay correspondence7 — the bijection between finite subgroups of SU(2)\mathrm{SU}(2) and simply-laced Dynkin diagrams — provides the bridge. Under this correspondence, the representation graph of 2I\mathrm{2I} has the connectivity of the extended E^8\hat{E}_8 Dynkin diagram. The KK spectrum inherits E8E_8 structure because the branching problem and the McKay graph encode the same algebraic data.

6. The Coxeter Threshold

The Coxeter number h=30h = 30 marks a sharp transition in spectral structure. Below l=30l = 30, the density of surviving modes increases stepwise:

RangeSurvivingTotalDensity
[0,6)[0, 6)160.17
[6,12)[6, 12)260.33
[12,18)[12, 18)360.50
[18,24)[18, 24)460.67
[24,30)[24, 30)560.83
[30,60)[30, 60)30301.00

The transition at l=30l = 30 is also the first appearance of nl=2n_l = 2: the second independent 2I\mathrm{2I}-invariant harmonic appears at the same threshold where the tower achieves completeness. Below the Coxeter number, every surviving mode has a single invariant (nl=1n_l = 1).

7. Spectral Dimension and Weyl Scaling

The Weyl counting function N(λ)=#{eigenvaluesλ}N(\lambda) = \#\{\text{eigenvalues} \leq \lambda\}, counted with multiplicity, satisfies

N(λ)Vol(Σ)6π2λ3/2N(\lambda) \sim \frac{\mathrm{Vol}(\Sigma)}{6\pi^2} \, \lambda^{3/2}

asymptotically on any Riemannian three-manifold Σ\Sigma9. For Σ=S3/2I\Sigma = S^3/\mathrm{2I} with unit radius, Vol(Σ)=2π2/120\mathrm{Vol}(\Sigma) = 2\pi^2/120, giving a Weyl coefficient of 1/3601/360. At spin l=500l = 500 (λ=1,002,000\lambda = 1{,}002{,}000), the Weyl prediction is NWeyl2,786,115N_{\mathrm{Weyl}} \approx 2{,}786{,}115, while the exact count gives Nexact=2,794,378N_{\mathrm{exact}} = 2{,}794{,}378 — a ratio of 1.003, confirming the multiplicity formula and three-dimensional Weyl asymptotics to within 0.3%.

Restricting the fit to the sparse regime below the Coxeter number yields a different exponent:

Regimedeffd_{\mathrm{eff}}R2R^2
Region I (6l296 \leq l \leq 29)2.5520.993
Region II (30l12030 \leq l \leq 120)2.9740.9999
Deep asymptotic (200l500200 \leq l \leq 500)2.9951.000

The deficit Δdeff0.45\Delta d_{\mathrm{eff}} \approx 0.45 between Region I and the asymptotic regime arises from the semigroup sparsity: 50% of spin values are forbidden in [0,30)[0, 30), each surviving level contributes multiplicity (2l+1)×1(2l+1) \times 1, and the resulting growth of N(λ)N(\lambda) is sub-Weyl.

The running Weyl exponent — computed cumulatively from l=6l = 6 up to successive cutoffs — shows the crossover:

Up to spin lldeffd_{\mathrm{eff}}
152.17
202.36
292.55
302.57
502.75
1002.87
2002.93
5002.97

The crossover from \sim2.55 to \sim3.0 occurs in a window around the Coxeter number. The Poincaré homology sphere is topologically three-dimensional everywhere, but its low-energy spectral content is thinner than a generic three-manifold. The semigroup gap structure creates a spectral bottleneck: modes are absent, and the cumulative eigenvalue count grows as if the manifold had effective dimension \sim2.55. Above hh, all levels are present, degeneracies grow normally, and standard Weyl behavior recovers. The crossover at l=hl = h is a spectral signature of the E8E_8 algebraic structure imprinted on the geometry.

8. Branch Comparison

The semigroup structure generalizes across the ADE classification. For each binary polyhedral group ΓSU(2)\Gamma \subset \mathrm{SU}(2), the Klein invariant ring has specific generator degrees, and the KK gap set on S3/ΓS^3/\Gamma is controlled by the corresponding semigroup.

Penrose (2I\mathrm{2I})Octahedral (2O\mathrm{2O})Tetrahedral (2T\mathrm{2T})Dodecagonal (BD6\mathrm{BD}_6)
McKay typeE8E_8E7E_7E6E_6D8D_8
Group order120482424
Coxeter hh30181214
Klein degrees12, 20, 308, 12, 186, 8, 124, 12, 14
Semigroup6,10,15\langle 6,10,15 \rangle4,6,9\langle 4,6,9 \rangle3,4,6\langle 3,4,6 \rangle2,7\langle 2,7 \rangle
Forbidden levels15633
Frobenius FF291155
Genus gg15633
g=h/2g = h/2?yesnonono
First excited λ\lambda168804824
Protection factor56×27×16×
deffd_{\mathrm{eff}} Region I2.552.652.672.47

The Penrose branch is extremal in protection — 56× versus 8× for the dodecagonal branch — but intermediate in Weyl deficit. The dodecagonal branch has a larger deficit (0.53 vs 0.45) despite having far fewer forbidden levels. The explanation is geometric: BD6\mathrm{BD}_6 has only 24 elements, so S3/BD6S^3/\mathrm{BD}_6 has 5× the volume of S3/2IS^3/\mathrm{2I}, and the 3 missing levels create a proportionally larger distortion in a shorter Coxeter window (h=14h = 14 vs 30).

The cases E6E_6 and D8D_8 have the same group order, genus (g=3g = 3), and Frobenius number (F=5F = 5), yet their forbidden sets differ: {1,2,5}\{1, 2, 5\} for E6E_6 versus {1,3,5}\{1, 3, 5\} for D8D_8. These produce distinct protection factors (16× vs 8×) and distinct Region I effective dimensions (2.67 vs 2.47). The placement of the gap set within the spectral tower, not merely its cardinality or Frobenius number, governs the low-energy effective dimension.

For the binary dihedral family (McKay type DnD_n, n4n \geq 4), the semigroup generators reduce to 2,p\langle 2, p \rangle with pp the unique odd generator. The gap set is {1,3,5,,p2}\{1, 3, 5, \ldots, p-2\} — the first g=(p1)/2g = (p-1)/2 odd integers — so the first excitation occurs uniformly at l=2l = 2 (λ=24\lambda = 24, protection factor 8×) for the entire family. As nn \to \infty, F/h1/2F/h \to 1/2 and g/h1/4g/h \to 1/4, so g=h/2g = h/2 is never achieved in the DD-family.

For E8E_8, the genus equals h/2h/2 exactly. The three generators {6,10,15}\{6, 10, 15\} are pairwise coprime (gcd(6,10)=2\gcd(6,10) = 2, gcd(6,15)=3\gcd(6,15) = 3, gcd(10,15)=5\gcd(10,15) = 5, while gcd(6,10,15)=1\gcd(6,10,15) = 1), producing a maximally sparse semigroup for the given generator sizes. The normalized Frobenius number F/h=29/30=0.967F/h = 29/30 = 0.967 — algebraic protection extends through nearly the entire Coxeter range. For D8D_8, F/h=5/14=0.357F/h = 5/14 = 0.357. The Penrose branch is the unique ADE branch whose spectral protection saturates nearly the full window below hh.

9. The LCD Question

The negative selection argument in the constraint geometry forces C10C_{10} as the discrete sector symmetry. The 6D lattice is the minimum embedding dimension for a periodic lattice whose projection to R3\mathbb{R}^3 carries icosahedral symmetry (Kramer–Neri, 198410). The E8E_8 algebraic structure enters through a separate channel: C10C_{10} on S3S^3 gives 2I\mathrm{2I}, and 2I\mathrm{2I} acting on C2\mathbb{C}^2 gives Klein invariants of degrees 12, 20, 30 satisfying T2=H31728f5T^2 = H^3 - 1728f^5 — the E8E_8 singularity. The McKay correspondence confirms the identification. Every link is a theorem.

The two dimensions answer different questions. 6D is the minimum embedding dimension for the periodic parent lattice that projects to a 3D icosahedral quasicrystal — standard quasicrystallography. E8E_8 (whose root lattice lives in 8D) is the algebraic structure governing the compactification geometry. It enters through the McKay correspondence, which identifies finite subgroups of SU(2)\mathrm{SU}(2) with ADE Dynkin diagrams, and determines the spectral content of S3/2IS^3/\mathrm{2I}: which KK modes survive, how the gap set is organized, and what effective dimension the low-energy spectrum carries.

The chain is forced. Negative selection gives C10C_{10}. C10C_{10} on S3S^3 gives 2I\mathrm{2I}. 2I\mathrm{2I} acting on C2\mathbb{C}^2 gives the Klein invariants. The Klein invariants satisfy the E8E_8 surface equation. The McKay correspondence confirms the identification. The spectral content — 15 forbidden levels, protection factor 56×, genus =h/2= h/2, Frobenius number 29 — follows from the invariant ring structure alone.

10. Attack Surface

The computation rests on the character orthogonality formula applied to the known conjugacy classes of 2I\mathrm{2I}11. The conjugacy class data — sizes, orders, and half-angle parameters — are standard results in the representation theory of finite groups. The semigroup identification is verified by direct enumeration up to l=500l = 500; discrepancy at any single level would falsify the correspondence.

The equivalence between the branching multiplicities nln_l and the Molien series is a theorem — it follows from the identification of 2I\mathrm{2I}-invariant spherical harmonics with 2I\mathrm{2I}-invariant homogeneous polynomials via the restriction map Sym2l(C2)L2(S3)\mathrm{Sym}^{2l}(\mathbb{C}^2) \to L^2(S^3). The semigroup structure of the gap set then follows from the structure of the invariant ring C[x,y]2I\mathbb{C}[x,y]^{\mathrm{2I}} as a graded algebra with three generators and one relation.

The multiplicity formula ml=(2l+1)nlm_l = (2l+1) \cdot n_l follows from the Peter–Weyl decomposition: the eigenspace at KK level k=2lk = 2l decomposes as DlLDlRD_l^L \otimes D_l^R under SU(2)L×SU(2)R\mathrm{SU}(2)_L \times \mathrm{SU}(2)_R, with 2I\mathrm{2I} acting on one factor. The invariant subspace retains the full (2l+1)(2l+1)-dimensional representation on the opposite factor. This is confirmed by the Weyl law check at l=500l = 500: the predicted count N2,786,115N \approx 2{,}786{,}115 matches the computed N=2,794,378N = 2{,}794{,}378 to within 0.3%.

The Weyl exponent fits are standard log-log regressions with 14 data points in Region I and 301 in the deep asymptotic regime. The deficit deff2.55d_{\mathrm{eff}} \approx 2.55 is robust to variations in the fitting window and quantifies spectral thinning caused by the semigroup gap structure.

The computation does not address whether S3/2IS^3/\mathrm{2I} appears as an internal space in any consistent compactification of string theory or supergravity. The Poincaré homology sphere is not Kähler, not Calabi–Yau, and not a group manifold. The spectral results reported here follow from representation theory alone and hold for any scalar field equation on S3/2IS^3/\mathrm{2I} with the round metric. The extension to pp-form spectra (vectors, spinors, symmetric tensors) requires analogous branching rules and has not been carried out.

The dynamical selection question — whether the E8E_8 branch is favored over competing ADE branches — is addressed in ADE Domain Walls and Branch Selection. The gap sets nest: gap(E6)gap(E7)gap(E8)\mathrm{gap}(E_6) \subset \mathrm{gap}(E_7) \subset \mathrm{gap}(E_8) and gap(D8)gap(E8)\mathrm{gap}(D_8) \subset \mathrm{gap}(E_8), so E8E_8 is the unique maximal element under gap-set inclusion. Domain wall tensions between branches are finite (bounded by max(h1,h2)\max(h_1, h_2)), with E8E_8 walls the most expensive by a factor of \sim456×. Thermal stability analysis shows E8E_8 walls dissolve last during cosmological cooling, and zero-temperature bounce actions satisfy B1B \gg 1 for all downhill transitions — tunneling between branches is frozen out. Selection occurs during the compactification epoch and is irreversible.

References

Footnotes

  1. Poincaré, H. (1904). Cinquième complément à l’Analysis Situs. Rendiconti del Circolo Matematico di Palermo, 18, 45–110.

  2. Ikeda, A. (1997). On the spectrum of homogeneous spherical space forms. Kodai Mathematical Journal, 20(3), 259–274.

  3. Vilenkin, N. Ja. & Klimyk, A. U. (1991). Representation of Lie Groups and Special Functions. Volume 1. Springer.

  4. Lachièze-Rey, M. & Caillerie, S. (2005). Laplacian eigenmodes for spherical spaces. Classical and Quantum Gravity, 22(3), 695–708.

  5. Klein, F. (1884). Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade. Teubner, Leipzig. English translation: Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree, Dover (1956). 2

  6. Du Val, P. (1934). On isolated singularities of surfaces which do not affect the conditions of adjunction. Proceedings of the Cambridge Philosophical Society, 30(4), 453–459.

  7. McKay, J. (1980). Graphs, singularities, and finite groups. Proceedings of Symposia in Pure Mathematics, 37, 183–186. 2

  8. Humphreys, J. E. (1990). Reflection Groups and Coxeter Groups. Cambridge University Press. 2

  9. Weyl, H. (1911). Über die asymptotische Verteilung der Eigenwerte. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 110–117.

  10. Kramer, P. & Neri, R. (1984). On periodic and non-periodic space fillings of Eⁿ obtained by projection. Acta Crystallographica Section A, 40(5), 580–587.

  11. Coxeter, H. S. M. & Moser, W. O. J. (1972). Generators and Relations for Discrete Groups, 3rd ed. Springer.